1319

A Configuration Dependence of the Longitudinal Relaxation Times of Carbohydrate Derivatives

By L. D. HALL* and CAROLINE PRESTON

(Department of Chemistry, The University of British Columbia, Vancouver 8, British Columbia, Canada)

Summary A Fourier Transform method has been used to measure the longitudinal relaxation times of the anomeric protons of eight anomeric pairs of pyranose derivatives; in every instance the axial proton has a shorter relaxation time than its equatorial counterpart.

WITH the advent^{1,2} of highly selective techniques for the determination of nuclear relaxation times, it is now possible to investigate the diagnostic potential of this class of n.m.r. parameters. We now report a configuration dependence of the longitudinal relaxation times (T_1 -values) of the anomeric protons of pyranose carbohydrates. The data listed in the Table were obtained via a F.T. method, using solutions that had been degassed by repeated freeze-pump-thaw cycles. With the exception of the two D-mannose derivatives (3) and (5), the assignments of the anomeric protons were trivial.

From the data listed for D-glucose (1), D-galactose (2), and 2-acetamido-2-deoxy-D-glucose (4) it is evident that an axially oriented proton has a shorter T_1 -relaxation time than its equatorially disposed counterpart. It is tempting to ascribe this differential to the different degrees of dipoledipole relaxation that H_{1a} and H_{1e} have with H_{3a} and H_{5a} by virtue of their different spatial separations. That the T_1 differential exists with substituents other than hydroxy at C_1 , is clearly demonstrated by the data given for α and β methyl D-glucopyranoside (6) and α and β methyl Dxylopyranoside (7); the latter data show that the dependence also applies for pentopyranoses. It is also obvious from the data for the pair of 1,2,3,4,6-penta-O-acetyl-Dglucopyranoses (8), that esterification of the other hydroxy substituents leaves the T_1 -differential essentially unchanged, although the absolute values of T_1 are reduced by ca. 40%.

If this differential is general, and there seems to be no reason why it should not be, then it provides the basis of a new method for assigning configuration, which might be applicable when other n.m.r. methods are ambiguous. For example, distinction between the two anomeric proton resonances of D-mannose (3) and 2-acetamido-2-deoxy-Dmannopyranose (5) cannot be made on the basis of their coupling with H_2 . Yet a sizable differential exists in their TABLE. Longitudinal relaxation times^a (T_1 -values, in sec) for the anomeric protons of pyranose carbohydrates^b

H ₁ (Axial)	H ₁ (Equatorial)
	6.4
3.4	7.0
3.9	
1.8	$6 \cdot 3$
- 0	
2.3	4.7
20	
1.1	$4 \cdot 9$
1.6	2.4
10	
0.0	$3 \cdot 8$
2.2	
2.0	3.7
	3.4

^a Measured with a Varian XL-100 instrument fitted with a Varian 620L computer programmed for a 16K F.T., at a probe temperature of *ca.* 42° unless otherwise stated. ^b *Ca.* 10% w/v. ^c In 99.96% deuterium oxide. ^d Sample temperature, 46°. ^e Sample temperature, 49°. ^t T₁ for OMe: $\alpha = 2.5$, $\beta = 3.1$ s. ^g T₁ for OMe: $\alpha = 2.6$, $\beta = 2.7$ s. ^b In deuteriobenzene.

 T_1 values that, in light of the other data discussed above, leads one to assign the lower field doublet to the α -anomer in both instances. An additional dependence, partially exemplified by derivatives (1, 3) and (4, 5) involves vicinally related protons; their interaction is larger when they have a gauche orientation.

It also seems probable that substituents other than the protons directly attached to the ring carbon atoms will show a configurational dependence of their T_1 -values, although the differential is likely to be smaller in magnitude. This is so for the methoxy resonances of (6) and (7).

(Received, 24th October 1972; Com. 1809.)

¹ R. Freeman and S. Wittekoek, J. Mag. Res., 1969, 1, 238.

² R. R. Ernst and W. A. Anderson, *Rev. Sci. Instr.*, 1966, **37**, 93; R. L. Vold, J. S. Waugh, M. P. Klein, and D. E. Phelps, *J. Chem. Phys.*, 1968, **48**, 33831; R. Freeman and H. D. W. Hill, *J. Chem. Phys.*, 1970, **53**, 4103.